QQUELC T =-

Wireless Module Expert

OpenCPU RIL
Application Note

GSM/GPRS Module Series
Rev. OpenCPU_RIL_Application_Note V1.1

Date: 2013-11-05

T—

www.quectel.com

http://www.quectel.com/

DUECT= GSM/GPRS Module Series
N . .
Wireless Module Expert OpenCPU RIL Application Note

Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Room 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233
Tel: +86 21 5108 6236

Mail:_info@quectel.com

Or our local office, for more information, please visit:
http://www.quectel.com/support/salesupport.aspx

For technical support, to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx

GENERAL NOTES

QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN ARE SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS
DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT
PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS
ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL
OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2013. All rights reserved.

OpenCPU_RIL_Application_Note Confidential / Released 1/16

mailto:info@quectel.com
http://www.quectel.com/support/salesupport.aspx
http://www.quectel.com/support/techsupport.aspx

GSM/GPRS Module Series
OpenCPU RIL Application Note

Qu ECF==
R
Wireless Module Expert

About the Document

Description
Inform App of URC message with system

History
Revision Date Author
1.0 2013-09-22 Stanley YONG Initial
1.
1.1 2013-10-21 Stanley YONG message, instead of callback function.
2. Delete QI_RIL_RegisterURC function.

2117

Confidential / Released

OpenCPU_RIL_Application_Note

DUECTFT<=

GSM/GPRS Module Series

Wireless Module Expert OpenCPU RIL Application Note
Contents
ADOUL the DOCUIMEBNT ...t e e e e e e e e e et e e e e e e e e e s st e e e eeeeeesssnsssaseeeeeessannssnnees 2
0N NS i 3
JLIE= L1 (SN 1T = SRRSO 4
N 1 4 o Yo [o 1 e U UREER 5
2 ADOUL OPENCPU RIL .ottt ettt ettt e e ettt e e e ekttt e e e e nbb e e e e annbeeeeaanbeeeeeannaeeens 6
IR O o 1= o [0 o U I o | I [} =T o = Vo =SSR 7
0 I @ | = 3| I [1T R PTPPR 7
3.2, QI RIL_SENUATCIMA ..ottt ettt e et e e e e e e ettt e e e ante e e e e anseeeeeaneeeeeennnees 8
4 WOrk With OPENCPU RIL ...t enaaenees 10
4.1. e | V1= 1722 U1 o] o SRS 10
4.2. L (0T [£= 110 T U o PRSPPIt 11
4.3. DEVEIOP Mid LAYET AP eeieeeeiiee ettt e e e e e et e e e e e e e e st eeeeaeeeeansnsnenaneeeeennnnnes 14
Lo Y o 1 o Y= [0 1 PSS 17

OpenCPU_RIL_Application_Note Confidential / Released 3/17

GSM/GPRS Module Series
OpenCPU RIL Application Note

QDUECTF=-
N
Wireless Module Expert
17
17

Table Index

TABLE 1: URC DEFINITION
TABLE 2: REFERENCE DOCUMENT

4717

Confidential / Released

OpenCPU_RIL_Application_Note

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

This document introduces the OpenCPU RIL (Radio Interface Layer) mechanism and how to use it.
Through the introduction of this document, developer can realize the value of convenience that OpenCPU

RIL brings, especially when they program with AT commands.

5/16

Confidential / Released

OpenCPU_RIL_Application_Note

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

2 About OpenCPU RIL

OpenCPU RIL is a user API function module. It is an open source layer, and serves AT processing. The
following diagram shows the RIL framework.

OpenCPU Application (App)

Telephony SMS Other
URC Handle
Program Program Program
()
[-Ts]
(5]
a
g /| Mid layer API functions
£ 12 are based on RIL.
s
Open‘['PU User API = Developer can reprogram
I g Bl T LY 0 Vo SR S T S Bl Sl i i) T o o 1 or add new ones.
P | Telephony API | sMsAPI || customized API |

OpenCPU RIL Other API

With the OpenCPU RIL, developer can simply call API to send AT commands and get the response when
API returns. Based on this, programmer can easily develop the mid layer API functions that serve the

upper application.

In OpenCPU module, all URC (Unsolicited Result Code) messages are reported to App by a system
message “MSG_ID_URC_INDICATION”. Please see chapter 5 for the definitions of all URCs.

About URC, please see chapter 4.2.

OpenCPU_RIL_Application_Note Confidential / Released 6/17

DUECTFT<=

Wireless Module Expert

GSM/GPRS Module Series
OpenCPU RIL Application Note

3 OpenCPU RIL Interfaces

OpenCPU RIL mainly provides two API functions and two system messages for the upper application.

RIL Service

Message: MSG_ID_RIL_READY

Message:
MSG_ID_URC_INDICATION

API: QI_RIL_Initialize

API: QI_RIL_SendATCmd

3.1. Ql_RIL_ Initialize

Description

This message is sent to the main task when RIL is ready during
booting.

This message is sent to the main task when an URC generates. In
this message, the parameterl carries the URC type, and the
parameter2 carries the specified URC-related information, which
needs to be interpreted from URC type to URC type.

When receives the message, the main task needs to call this
function to initialize RIL-related things. The init commands defined
in g_InitCmds will be executed at this time.

This function implements sending AT command with the result
being returned synchronously.

This function initializes RIL-related functions. When the main task receives the message
MSG_ID_RIL_READY, App needs to call this function to initialize RIL-related things, including executing
some initial AT commands that are defined in the variable g_InitCmds.

* Prototype

void Ql_RIL_Initialize(void);

o Parameter
None.

. Return value
None

OpenCPU_RIL_Application_Note

Confidential / Released 7117

DUELCF== GSM/GPRS Module Series
Wireless Module Expert OpenCPU RIL Application Note

3.2. Ql_RIL_SendATCmd

This function is used to send AT command with the result being returned synchronously. Before this
function returns, the responses for AT command will be handled in the callback function atRsp_callback,
and the paring results of AT responses can be stored in the space that the parameter userData points to.
All AT responses string will be passed into the callback line by line. So the callback function may be called
for times.

This function is the critical API that is the interface between OpenCPU RIL and the upper application. The
function is defined as below.

* Prototype

s32 QI_RIL_SendATCmd(char* atCmd,
u32 atCmdLen,
Callback_ATResponse atRsp_callback,
void* userData,
u32 timeout
);
typedef s32 (*Callback_ATResponse)(char* line, u32 len, void* userdata);

 Parameter
atCmd:
[inN]AT command string.
atCmdLen:
[in]The length of AT command string.
atRsp_callBack:
[in]Callback function for handling the response of AT command.
userData:
[out]Used to transfer the customer's parameter.
timeOut:
[in]Timeout for the AT command, unit in ms. If itis set to 0, RIL uses the default timeout time (3min).

* Return value

RIL_AT_SUCCESS, succeed in executing AT command, and the response is OK.

RIL_AT_FAILED, fail to execute AT command, or the response is ERROR.

RIL_AT_TIMEOUT, indicates sending AT is timeout.

RIL_AT_BUSY, indicates sending AT.

RIL_AT_INVALID_PARAM, indicates invalid input parameter.

RIL_AT_UNINITIALIZED, indicates RIL is not ready, need to wait for MSG_ID_RIL_READY and then call
QI_RIL_Initialize() to initialize RIL.

. Default Callback Function:

If this callback parameter is set to NULL, a default callback function will be called. But the default callback
function only handles the simple AT response. Please see Default_atRsp_callback in ril_atResponse.c.

OpenCPU_RIL_Application_Note Confidential / Released 8/17

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert
The following codes are the implementation for default callback function.
if (QI_RIL_FindLine(line, len, "OK"))// find <CR><LF>OK<CR><LF>, <CR>OK<CR>, <LF>OK<LF>

s32 Default_atRsp_callback(char* line, u32 len, void* userdata)

{

{
return RIL_ATRSP_SUCCESS;
else if (QI_RIL_FindLine(line, len, "ERROR") // find <CR><LF>ERROR<CR><LF>,

}
<CR>ERROR<CR>, <LF>ERROR<LF>
[| Q_RIL_FindString(line, len, "+CME ERROR:")//fail
[| Q_RIL_FindString(line, len, "+CMS ERROR:"))//fall

return RIL_ATRSP_FAILED;

}
return RIL_ATRSP_CONTINUE; //continue to wait

Confidential / Released

OpenCPU_RIL_Application_Note

9/17

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

4 \Work with OpenCPU RIL

4.1. RIL Initialization

When the programs start up, RIL will send MSG_ID_RIL_READY message to main task. When received
the message, the main task needs to call QI_RIL_Initialize function to initialize RIL, including executing
some initial AT commands that are defined in the variable g_InitCmds.

Besides, App needs to handle MSG_ID_URC_INDICATION message to receive URC messages. In
MSG_ID_URC_INDICATION message, the parameterl carries the URC type, and the parameter2 carries
the specified URC-related information, which needs to be interpreted from URC type to URC type.

The following codes show how to initialize RIL in application.
void proc_main_task(s32 taskld)
{

S32 ret;

ST_MSG msg;

/I START MESSAGE LOOP OF THIS TASK
while(TRUE)
{
Ql_OS_ GetMessage(&msg);
switch(msg.message)
{
#ifdef OCPU_RIL SUPPORT
case MSG_ID_RIL_READY:
Ql_Debug_Trace('<-- RIL is ready -->\r\n");
ret = QI_RIL_Initialize();

break;
#endif
default:
break;
}
}
}

The variable g_InitCmds defines all initial AT commands that OpenCPU RIL depends on. Developer may

OpenCPU_RIL_Application_Note Confidential / Released 10/17

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

add other AT commands, but should not delete the existing AT commands. The existing initial AT
commands are listed as below.

Initial AT Commands Description

AT+CMEE=1 Report mobile equipment error with numeric values
ATS0=0 No auto-answer the coming call

AT+CREG=1 GSM network status indication

AT+CGREG=1 GPRS network status indication

AT+CLIP=1 RING number indication for the coming call
AT+COLP=0 No CLI (Connected Line Identification)

4.2. Program URC

All URC messages are indicated to App via the system message MSG_ID_URC_INDICATION. In this
message, the parameterl carries the URC type, and the parameter2 carries the specified URC-related
information, which needs to be interpreted from URC type to URC type.

In OpenCPU RIL, URC contains two types: system URC and AT URC.
- System URCs indicate the various status of module.
- AT URC serves some specific AT command.
For example, the response for some AT command is as below:

AT+QABC (send AT command)

OK (responsel)
+QABC:xxx (response2) --> this is the final result which is reported by URC.

When calling QI_RIL_SendATCmd() to send such AT command, the return value of QI_RIL_SendATCmd
indicates the responsel, and the response2 may be reported via the callback function, especially for
some AT commands that the time span between responsel and response2 is very long, such as

AT+QHTTPDL, AT+QFTPGET.

By default, OpenCPU demos some basic and necessary URCs, not all URCs. Developer may add new
URC handling according to the real requirements. The following sample codes show the basic URCs

indications and handling.

/I receive and handle URCs in the system message MSG_ID_URC_INDICATIO
void proc_main_task(s32 taskld)

{
s32 ret;

OpenCPU_RIL_Application_Note Confidential / Released 11/17

DUECTFT<=

Wireless Module Expert

ST _MSG msg;

/I START MESSAGE LOOP OF THIS TASK
while(TRUE)
{
Ql_OS_ GetMessage(&msg);
switch(msg.message)
{
#ifdef OCPU_RIL SUPPORT
case MSG_ID_RIL_READY:
Ql_Debug_Trace("<-- RIL is ready -->\r\n");
ret = QI_RIL_Initialize();
break;
case MSG_ID_URC_INDICATION:
switch (msg.param1)
{
case URC_SYS_INIT_STATE_IND:
Ql_Debug_Trace("<-- Sys Init Status %d -->\r\n", msg.param2);
break;

case URC_SIM_CARD_STATE_IND:
Ql_Debug_Trace("<-- SIM Card Status:%d -->\r\n", msg.param2);

break;
case URC_GSM_NW_STATE_IND:
Ql_Debug_Trace("'<-- GSM Network Status:%d -->\r\n", msg.param2);

break;
case URC_GPRS_NW_STATE_IND:
QI_Debug_Trace("<-- GPRS Network Status:%d -->\r\n", msg.param?2);
break;
case URC_CFUN_STATE_IND:
QI_Debug_Trace("<-- CFUN Status:%d -->\r\n", msg.param2);
break;
case URC_COMING_CALL_IND:

{
ST_ComingCall* pComingCall = (ST_ComingCall*)msg.param2;

Ql_Debug_Trace("<-- Coming call, number:%s, type:%d -->\r\n",
pComingCall->phoneNumber, pComingCall->type);
break;
}
case URC_CALL_STATE_IND:
switch (msg.param?2)
{

case CALL_STATE_BUSY:
Ql_Debug_Trace("<-- The number you dialed is busy now -->\r\n");

break;

OpenCPU_RIL_Application_Note Confidential / Released

GSM/GPRS Module Series
OpenCPU RIL Application Note

12 /17

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

case CALL_STATE_NO_ANSWER:
Ql_Debug_Trace("<-- The number you dialed has no answer -->\r\n");
break;
case CALL_STATE_NO_CARRIER:
Ql_Debug_Trace('<-- The number you dialed cannot reach -->\r\n");
break;
case CALL_STATE_NO_DIALTONE:
Ql_Debug_Trace('<-- No Dial tone -->\r\n");
break;
default:
break;
}
break;
case URC_NEW_SMS_IND:
Ql_Debug_Trace("<-- New SMS Arrives: index=%d\r\n", msg.param?2);
break;
case URC_MODULE_VOLTAGE_IND:
Ql_Debug_Trace("<-- VBatt Voltage Ind: type=%d\r\n", msg.param?2);
break;
default:
Ql_Debug_Trace("<-- Other URC: type=%d\r\n", msg.param2);
break;
}
break;
#endif
default:
break;

In the sample codes above, developer may watch the parameter “msg.param2” is interpreted as a
different type from URC type to URC type.

For example, when the URC type is URC_GPRS_NW_STATE_IND, the parameter “msg.param2” carries
the GPRS network status information, which is a 32 integer value (one value of Enum_NetworkState).
When the URC type is URC_COMING_CALL_IND, the parameter “msg.param2” carries the coming call
information, which is a structure (see also the definition of ST_ComingCall).

All system URC string from module operating system and the handler are defined in the variable
“m_SysURCHdIEntry” in the file ril_urc.c. If there’s a new system URC that needs to be processed,
developer may refer to the implementation method for the existing URC to add the new URC string and

the handler in “m_SysURCHdIEntry”.

OpenCPU_RIL_Application_Note Confidential / Released 13/17

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

All AT commands-related URC string and the handler are defined in the variable “m_AtURCHdIEntry” in
the file ril_urc.c. If there’'s a new AT URC that needs to be processed, developer may refer to the
implementation method for the existing AT URC to add the new AT URC string and the handler in
“‘m_ATURCHdIEntry”.

4.3. Develop Mid Layer API

Over OpenCPU RIL, some primary API functions, such as telephony-related and short message-related,
have been developed. Developer can program new API to support other functions. For example, to get
IMSI of SIM card, here is the steps for implementation below.

* First, define a new API function named “RIL_SIM_GetIMSI”
Developer may create a new file ril_sim.c in the directory “SDK\ril\src\” to store this API function.
The prototype of this function is declared as below.

$32 RIL_SIM_GetIMSI(/*[in]*/char* pIMSI, /*[in]*/u32 pIMSILen)

The parameter plmsi is pointer to a buffer to store the IMSI string
The parameter pIMSILen indicates the buffer length of pIMSI. The buffer length is at least 15bytes.

* Secondly, implement RIL_SIM_GetIMSI
The following is the complete implementation codes for RIL_SIM_GetIMSI().

1l

/I Implementation for RIL_SIM_GetIMSI

1l

s32 RIL_SIM_GetIMSI(/*[in]*/char* pIMSI, /*[in]*/u32 pIMSILen)

{

if 'pIMSI || pIMSILen < 15)

{

return QL_RET_ERR_INVALID_PARAMETER,;

}

Ql_memset(pIMSI, 0x0, pIMSILen);

return QI_RIL_SendATCmd("AT+CIMI", Ql_strlen("AT+CIMI"), ATResponse_IMSI_Handler, pIMSI,
0);
}

e Thirdly, implement the callback

1l

/I Implementation for ATResponse_IMSI_Handler

/I Note: All AT responses string will be passed into the callback line by line

OpenCPU_RIL_Application_Note Confidential / Released 14717

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

I
static s32 ATResponse_IMSI_Handler(char* line, u32 len, void* param)

{
char* p1 = NULL,;
char* p2 = NULL,;
char* strimsi = (char*)param;

pl= QI RIL _FindString(line, len, "OK");
if (p1)
{

return RIL_ATRSP_SUCCESS;

}
pl = Ql_RIL_FindLine(line, len, "+CME ERROR:");
if (p1)
{
return RIL_ATRSP_FAILED;

}
pl = QI_RIL_FindString(line, len, "\r\n");
if (p1)
{
p2 = Ql_strstr(pl + 2, "\r\n");
if (p2)

{
Ql_memcpy(strimsi, p2 + 2, p2 - pl -2);

return RIL_ATRSP_CONTINUE;

lelsef
return RIL_ATRSP_FAILED;

}
return RIL_ATRSP_CONTINUE; // Wait for the next line of response

Developer should implement the callback function according to the kinds of responses of the AT
command (please see document [1]). For example, the following diagram shows the usage and all kinds

of responses of AT+CIMI.

AT+CIMI Request International Mobile Subscriber Identity (IMSI)

Test Command Response
AT+CIMI="? OK
Execution Command Response

TA returns <IMSI>for identifying the individual SIM which is
attached to ME.
<IMSI>

AT+CIMI

OpenCPU_RIL_Application_Note Confidential / Released 15/17

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

OK
If error is related to ME functionality:
+CME ERROR: <err>

Reference
GSM 07.07

. Fourthly, use the new API
Now the new API has been made. Programmer can call the API to get IMSI number. The usage is shown

as below.

extern s32 RIL_SIM_GetIMSI(char* pIMSI, u32 pIMSILen);

s32 ret;

char strimsi[20];

ret = RIL_SIM_GetIMSI(strimsi, sizeof(strimsi));
if (RIL_AT_SUCCESS == ret)

{
Ql_Debug_Trace("The IMSI is: %s.\r\n", strimsi);

}else{
Ql_Debug_Trace("Fail to get IMSI"\r\n");

OpenCPU_RIL_Application_Note Confidential / Released 16/17

GSM/GPRS Module Series
OpenCPU RIL Application Note

DUECTFT<=

Wireless Module Expert

5 Appendix

Table 1: URC Definition

URC Message Description
URC_SYS _INIT_STATE_IND Module initial state indication during booting.
URC_SIM_CARD_STATE_IND SIM card state indication
URC_GSM_NW_STATE_IND GSM network state indication
URC_GPRS_NW_STATE_IND GPRS network state indication
URC_CFUN_STATE_IND CFUN state indication
URC_COMING_CALL_IND Coming call indication
URC_CALL_STATE_IND Call state indication
URC_NEW_SMS_IND New SMS indication
Voltage indication when the power supply to module is not
URC_MODULE_VOLTAGE_IND
- - - normal.
Table 2: Reference Document
SN Document Name
[1] Mxx AT Commands Manual
[2] OpenCPU_User_Guide

OpenCPU_RIL_Application_Note Confidential / Released 17/17

	About the Document
	Contents
	Table Index
	1 Introduction
	2 About OpenCPU RIL
	3 OpenCPU RIL Interfaces
	3.1. Ql_RIL_Initialize
	3.2. Ql_RIL_SendATCmd

	4 Work with OpenCPU RIL
	4.1. RIL Initialization
	4.2. Program URC
	4.3. Develop Mid Layer API

	5 Appendix

